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CHAPTER 6, SUPERSONIC AERODYNAMICS 6.1 

6.1 INTRODUCTION 
Some basic concepts of Aerodynamics and Thermodynamics have previously been 

covered. These related to determination of fluid flow around various shapes and the 

resultant forces acting upon these shapes. Fluids previously studied were assumed 
to be incompressible. This assumption, among others, reduced the number of 

variables involved and allowed relatively simple solutions to previously complex sets 
of equations. Making assumptions to eliminate some variables is an everyday activity 
of the engineer, but care needs to be taken to ensure assumptions made to provide an 

idealized solution to a given physical system are still valid if the idealized solution is 

applied to a related, but different, physical system. 

Historically, for an aircraft system performing in low speed air the idealized 
incompressible flow solution was good enough to achieve accurate design results. This 
was the case for all aerodynamics consideration up to the late 1930s. Although as 
aircraft speeds increased toward the speed of sound, so did requirements for new 
idealized solutions to physical systems using different and better assumptions. In this 

chapter, the assumption of incompressible flow for aerodynamic analysis will be 

dropped, and flow fields will be considered compressible. Results obtained from the 

study of compressible fluids will then be applied to high speed flow situations. 

6.2 TYPES OF GASES 
A real gas, such as air, is a compressible, viscous, elastic, nonhomogeneous, and 

chemically active fluid (any gas is also a fluid). The physical principles governing its 

behavior are not understood completely enough to permit the exact mathematical 
formulation of a general flow problem. Even if it were possible, the resulting 
equations would defy simple solution. Using reasonable assumptions which can be 

verified by experiment, specific physical systems can be described by simpler 

equations, and the necessary properties determined. 

The use of three different characteristic fluids has been found acceptable for solving 

most fluid dynamics problems involving subsonic, transonic, and supersonic flows. In 

each of the three cases the characteristic fluid is assumed to be homogeneous and 
non-chemically reacting. Using the assumption of a homogeneous fluid is acceptable 
until the mean free path between gas molecules becomes a significant fraction of the 

size of the object being studied, such as Near Space. The assumption of a 

nonchemically reacting gas is good up to fairly significant temperatures, well above 

those encountered by the SR-71. 
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The three characteristic fluids are: 
1. An ideal fluid; one which is incompressible, inelastic, and non-viscous. The 

ideal fluid assumption gives reasonable results when analyzing slow-speed flow 

outside of a boundary layer. More rigorously, thermally perfect or calorically perfect 

gases are those whose internal energy is a function of temperature only (thermally 
perfect) or a linear function of temperature (calorically perfect-hence a calorically 

perfect gas is also thermally perfect). More broadly, an ideal or perfect fluid is simply 

one which obeys the thermal equation of state. For low densities, all gases follow this 

relation. 

2. An incompressible, inelastic, viscous fluid, which differs from an ideal fluid 

because of viscosity. This fluid assumption gives reasonable results for low-speed flow 

inside a boundary layer and in vortex wakes behind an object. 

3. A compressible, elastic, nonviscous fluid, which will be used in this chapter. 
This fluid assumption provides reasonable results for flow outside of the boundary 
layer up to hypersonic speeds (five times the speed of sound). Elasticity in a fluid is 

closely related to compressibility and is characterized by the finite amount of time it 

takes to affect the change in fluid pressure per unit change in specific volume. This 

property accounts for the finite propagation of a sound wave, as opposed to 

instantaneous propagation that is modeled in an inelastic fluid. 

Analysis of a viscous, compressible fluid would be very complex and rely heavily on 
experimental evidence for confirmation of the associated theory. Hypersonic flow 
requires the consideration of a viscous, compressible, nonhomogeneous, dissociated, 

and chemically active fluid. It should easily be seen that the complexity of hypersonic 

analysis is much greater than subsonic and supersonic flow analysis. 

6.3 COMPRESSIBLE, ELASTIC, NON-VISCOUS 
FLOW 
All aerodynamics is concerned with changes in pressure that occur over bodies of 

various sizes and shapes and the causes and effects of these changes (lift and drag). 

A large part of early aerodynamic research was based on the assumption of a 

nonviscous, inelastic, incompressible (ideal) fluid. The assumption of ideal flow was 

acceptable at low speeds where a small change in pressure caused virtually no change 

in the density of the fluid. The assumption of a nonviscous fluid was acceptable as 
long as the viscous effects were considered limited to the vicinity of the surface (in the 

boundary layer). With the advent of high speed flight, these assumptions had to be 
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reconsidered. 

The inelastic flow assumption implies that pressure variations are instantaneously felt 

everywhere in the fluid. In reality, they are transmitted at a finite speed, the speed 

of sound. As the velocity of an aircraft approaches some sizeable fraction of the speed 
of sound (one half or more), the results obtained from incompressible flow relations 

are found to be in error due to the effects of compressibility. Viscous effects can be 

omitted from this discussion by studying flow on an object outside of the boundary 

layer. Boundary layer effects are a very small percentage of the total flow effects. 

Compressible flow exists when a change in pressure is accompanied by a change in 

density. The amount of compressibility depends on the velocity of the fluid flow. All 
gaseous flow is compressible, and even the so-called incompressible (low speed) flow 
experiences some degree of compression. In the incompressible case, the velocity is 
so low that the change in density is insignificant compared to the change in pressure. 

The introduction of the new variable, density (as a function of velocity), in 

aerodynamic problems requires the introduction of an equation of state and other 

thermodynamic relations to describe the changes in pressure, density, and 
temperature. The study of compressible flow combines the science of fluid mechanics 

and thermodynamics. 

The general solution of a compressible flow problem consists of finding three unknown 
velocity components and three density and pressure changes with respect to the 
spatial coordinates x, y, and z. The mathematical complexity of this three- 

dimensional solution obscures many of the fundamental concepts of compressible flow 

that are quite clear when the flow is analyzed in one or, in some cases, two 
dimensions. In this chapter, fluid flow equations will be developed for 

one-dimensional flow. The modifications necessary to use the equations for 
two-dimensional flow will be discussed later in the chapter. Lastly, three-dimensional 

flow will be discussed qualitatively. 

6.3.1    ONE-DIMENSIONAL FLOW APPROXIMATION 
One-dimensional flow generally implies straight line or linear motion; however, it 

need not be this restrictive. The equations of "one-dimensional" fluid flow can apply 

to flow through a passage in which the cross-sectional area varies slowly such that 
components of velocity normal to the primary direction of flow are minor compared to 
the primary direction flow components and can be considered negligible. For instance, 

flow in a curved channel can be considered one-dimensional as long as the turning of 
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the flow is small compared to the length of the segment of channel that is under 

consideration. The channel need not be constant in area as long as the divergence or 

convergence is small compared with the distance along the channel. The channel may 
either be bounded by physical boundaries such as the walls of a pipe or wind tunnel 

or by streamlines such as those surrounding an airfoil in flight. 

6.4 COMPRESSIBLE FLOW EQUATIONS 
The compressible flow equations which relate the flow velocity to the pressure, 

temperature, and density are obtained from three fundamental conservation principles 

and the equation of state for the particular fluid in question. These are: 

1. Conservation of Mass 
2. Conservation of Momentum 

3. Conservation of Energy 

4. Equation of State 

The assumptions that are made when first developing the compressible flow relations 
(equations) are that: the flow is steady, one-dimensional, nonviscous, adiabatic, and 
the fluid conforms to the equation of state for a perfect (or ideal) gas. As restrictive 
as these assumptions may seem, they do not seriously limit the validity of the 

resulting equations. 

For steady flow it is assumed flow properties upstream do not change with time. The 

one-dimensional assumption can be extended to other than linear motion with certain 

restrictions. Viscosity can be ignored when flow is examined outside of a boundary 

layer. The adiabatic assumption can be justified by the fact that the temperature 
gradients, which are the driving potential for the transfer of heat in a flow, are small, 

causing the heat transfer, dq, to be small or negligible. The perfect gas assumption 

is good for air up to moderately high temperatures. 

Under these assumptions, the conservation equations and equation of state may be 

written: 
1. Conservation of Mass: (Continuity Equation) 

m = pVA = constant (6.1) 

Applying the product rule of differentials and dividing by pVA   gives 

(6.2) 
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dp = dV+dA= 0 

p       V      A 

2. Conservation of Momentum:   (Momentum Equation) 

dP + p V dV = 0 (6.3) 

3. Conservation of Energy:   (First Law of Thermodynamics) 

dq - dw= de ' (6.4) 

4. Equation of State: (Ideal Gas) 

P = pRT (6.5) 

Before deriving the compressible flow equations, the concepts of total properties, speed 
of sound, Mach, speed ranges, and sound wave propagation must be studied in detail. 

6.5     TOTAL (STAGNATION) PROPERTIES 
Temperature, density, and pressure are normally thought of as static properties of a 

gas. Since we will be dealing entirely with a flowing gas, it becomes convenient to 
define a new temperature, density, and pressure to include a velocity component. We 

will find that not only does it simplify calculation, but, under certain conditions, it is 
more convenient to measure the total values of temperature, density, and pressure 
than the static values and velocities. 

6.5.1 TOTAL TEMPERATURE 
Consider the restricted steady flow energy equation from Derivation F.4 in App. F. 

V2 

h+__ = constant 
IT 

(F.4) 
The constant, resulting from the kinetic energy term combined with static enthalpy, 
forms a new term, total enthalpy, hj 
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V2 

constant = hT = "+_. (6 6) 

Now, consider a calorically perfect gas (constant specific heat values), 

where   h = Cp T , then 

V2 V2 

hr = Cp TT (6.8) 

where TT = T + V^C,, and is called the Total or Stagnation Temperature. Thus the 

Total Temperature at a given point in a flow is that temperature that would exist if 
the flow were slowed down adiabatically (without external heat transfer) to zero 
velocity. Physically this means in a flowing gas the molecules have superimposed on 

their random motion the directed motion of the flow. Recall, static temperature is just 

a measure of the amount of random molecular motion in a gas. The kinetic energy 

of the directed motion is the cause of the difference between static and total 
temperature. If, in some manner, the velocity of the airstream is adiabatically 
reduced to zero, and in the absence of work being done, the resulting static 

temperature of the gas becomes equal to the total temperature of the flowing fluid. 
This will be true regardless how the "slowing down" process occurs. Therefore, a 
thermometer fixed with respect to a duct will measure total temperature (neglecting 

heat transfer effects) because it reduces the velocity of a small portion of the stream 

to zero. 

Although the same final temperature, TT , is attained whether the slowing down 
process is reversible or irreversible, the pressure and density finally reached will vary 

with the degree of irreversibility associated with the slowing down process. For 

pressure this may be illustrated as follows: in Figure 6-1, imagine the flowing gas at 

station (1) to be brought to rest adiabatically by means of a duct diverging (dashed 

lines) to an extremely large area (X) where the flow velocity, in the limit, is zero. If 

the diverging duct is frictionless, the slowing down process from (1) to (X) is isentropic 

and is shown as the vertical line from (1) to (2) on the temperature-entropy (T-S) 

diagram. If the diverging duct is frictional, the slowing down process from (1) to (X) 

is irreversible but adiabatic (hence, dS > 0) and is shown by the line of increasing 

entropy, (1) to (3), on the T-S diagram. 
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The final temperature attained at (2) and at (3) is the same; since by the First Law 

of Thermodynamics written between station (1) and (X) for each of these processes, 

V- Cpr1 + __ = CpT2   (frictionless process) 
(6.9) 

V2 . Cpr1 + ___ = CpT3 (fractional process) 
(6.10) 

However, when examining the pressure at each state, Pb < Pe 

FIGURE 6.1 TOTAL PRESSURE AND DENSITY FOR REVERSIBLE 
AND IRREVERSIBLE PROCESSES 

6.5.2 TOTAL PRESSURE 

The total pressure of a flowing gas is defined as the pressure obtained when the gas 
is brought to rest isentropically. Thus the pressure corresponding to state (2) on the 

T-S plot in Figure 6.1 is the total pressure of the gas in state (1), hence 

P«) = Pc = PT • The pressure measured by a pitot tube placed in subsonic flow 
corresponds very closely to the total pressure of the gas since the slowing down 
process preceding the pitot tube is basically isentropic. 

6.5.3 TOTAL DENSITY 

Total density of a flowing gas is defined similarly to pressure as the density obtained 
when the gas is brought to rest isentropically. 
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6.5.4 MATHEMATICAL RELATIONSHIPS FOR TOTAL PROPERTIES 

By use of the ideal gas law and the equation of state for an isentropic process 

Pp-* = constant. (6-n) 

The following relationships between static and total values of pressure, density, and 

temperature can be developed 

Pr_ 
('m   "\ 

. r v    J 
(6.12) 

(6.13) 

Since total properties are constant throughout an isentropic flow and are easily 
measured, they are useful and convenient tools when evaluating the changes in 
compressible fluid flow. In different texts, the subscripts o, t, or T are used to denote 

total properties. In this text, "T" is used. 

6.6    SPEED OF SOUND 
The speed of sound is a fundamental parameter in compressible flow theory and is the 
speed at which small disturbances (sound waves) propagate through a compressible 

fluid. The quantity 

a = 
dP (6.14) 

N dp 

is called the speed of sound or acoustic speed since it is the speed with which sound 
waves propagate through a fluid. Equation 6.14 is derived for a nonviscous fluid; 

therefore, it is only valid for small disturbances which do not create any shear forces 

in the fluid.  (Derivation F.l in Appendix F.) 

Sound waves are, by definition, "small"; the criterion being that the velocity gradients 

in a fluid, dV, due to the pressure disturbances, are so small that they create 

negligible shear or friction forces, and that the speed of sound is very large; 
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a   »   dV 

It follows that the motion of a sound wave through a fluid is an isentropic 

phenomenon, since it does not disturb the "disorder" of the fluid, i.e., the dP, dp and 

dT in the fluid caused by the passage of a sound wave are very small. In reality, the 

size of an audible sound wave is so small that the entropy increase near the wave is 

negligible, and Equation 6.14 is quite accurate for computing the speed of sound 

wave propagation. 

Squaring Equation 6.14 (a2 = ...) gives a pressure-density relationship for a fluid 

which may be used to eliminate the pressure term in the momentum equation, 

dP + p V dV = 0 (6.3) 

a2 dp + p V dV = 0 (6.15) 

Equation 6.15 is important for later derivation of compressible flow relations, and 

the inference of isentropic conditions must be remembered when using it. 
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If pressure is a function of density and entropy state (S), 

P = P(p , S) 

then by partial differentiation, 

«■>*%* 

and the substitution for    dp    in the momentum equation cannot be made as 

conveniently. However, if the flow conditions are isentropic, dS = 0, then 

dP= bP 
"3p   7>p 

and dP can be eliminated from the momentum equation. Since an isentropic process 

has been assumed, Equation 6.14 should be correctly written as 

a= 
N 

5P 
"op 

The speed of sound may be evaluated for a perfect gas from the conservation of energy 
equation and the equation of state. The relationship between P and p , evaluated 

for an isentropic process, is 

p 
— = constant 
PY 

(6.11) 
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Taking the natural log of this equation and differentiating, 

In P - y In p   =   In (constant) 

we have 
t 

*i -yd£ =0 
P          p 

■ ■ 

or 

dP _ v P 
dp      Tp 

(6.16) 

Substituting 

|=a^ = yRT 
dp 

(Equation of State, 6.5) 

a = v/y^T 

or (6.17) 

Thus the speed of sound is a function of temperature only. 

"Cookbook" equations for the speed of sound, in air, at a local temperature are 

a[knots]   = 29 y/TTW 

(6.18) 
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a  [ft/sec]   = 49 y/T VR\ 

(6.18a) 

6.7    MACH 
Mach is the most important parameter in compressible flow theory, since it compares 

the speed of sound in a fluid (a significant measure of compressibility effects) and the 

speed at which the fluid is flowing. Mach is defined as the ratio of a flow velocity to 

a speed of sound. 

a 
(6.19) 

If Mach is defined in terms of a local speed of sound, it is called local Mach. When 
local Mach is used, it will be written without a subscript. Mach may be defined in 
terms of the speed of sound at some given point in the flow, i.e., the ratio of an 

aircraft velocity to the speed of sound based on the ambient temperature (as opposed 

to local temperature). For flow in channels, ducts, and nozzles, it is sometimes more 

convenient to reference the Mach to a specific place in the flow. When this is done, 

Mach is written with subscripts or superscripts, i.e., 

T      a- a* 

where a,, is the speed of sound at the stagnation temperature, TT , and a* is the 

speed of sound at local sonic conditions. The concept of the local sonic conditions will 

be discussed later in this chapter. 

Rewriting Equation 6.19 in terms of M2, 

«* = i?  =     V2 
a2       V*T 

it can be seen that V2 is a measure of the directed or kinetic energy of the fluid flow 
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and that the temperature term in the denominator is a measure of the internal or 

random thermal energy of the fluid. 

This interpretation brings out two disadvantages of using Mach in flow descriptions: 

1. Mach is proportional to the velocity of the flow. 

2. Mach tends toward infinity as the temperature decreases. 

These limitations will become apparent when working with hypersonic fluid flow or 

at extreme altitudes where the fluid is no longer a continuous medium. 

6.8 CLASSIFICATION OF SPEED RANGES 
It is clear, now, that there are at least two basic speed ranges to be considered: 

subsonic speeds, where the Mach is less than one, and supersonic speeds, where the 
Mach is greater than one. When describing the aerodynamics of an aircraft, a range, 
extending from high subsonic speeds to low supersonic speeds.is found which is not 
described by either the subsonic or supersonic flow equations. This is the transonic 

speed range. The local flow over an aircraft in transonic flight is part subsonic and 

part supersonic. The interaction between the two types of flow causes aerodynamic 
phenomena which have characteristics of neither subsonic nor supersonic flow. These 
phenomena begin at the critical Mach and continue until the flow on the aircraft is 
completely supersonic. This range is from about Mach .8 to 1.2. Since the transonic 
range is difficult (in some cases impossible) to describe mathematically, it will be 
discussed after more knowledge is gained about supersonic flow.   Extremely low 
velocities (M < .7) are studied as incompressible flow. Extremely high velocities typify 

hypersonic flow, which is of current interest to space scientists concerned with orbital 

and re-entry velocities.   The hypersonic speed range is considered to begin at 
Mach 5.0, but some hypersonic characteristics appear at speeds as low as Mach 3.5. 
Hypersonic flow is characterized by high temperatures which cause ionization, gaseous 

dissociation and recombination, extreme wave angles, boundary layer interaction, and 

high heat transfer rates. 

6.9 TWO-DIMENSIONAL PROPAGATION OF 
SOUND WAVES 
Sound waves are a series of alternate compression and rarefaction pressure pulses 
such as might be caused by a tuning fork. They are propagated or transmitted in all 

directions in a fluid at a given speed proportional to the temperature of the fluid. If 
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the disturbance which is causing sound waves is motionless in the fluid, these waves 

appear to radiate out from the disturbance in a series of concentric rings like ripples 
on a pond as in Figure 6.2a. 

If the disturbance is moving in the fluid, the wave pattern is quite different since each 
wave is emitted from a different point in the fluid. For example, if the disturbance 
is traveling at some speed which is less than the speed of sound in the fluid, the wave 

pattern is distorted as shown in Figure 6.2b. In this case, the sound wave outruns the 

disturbance, forming a series of circles one inside the other, but with different centers. 

If the disturbance travels at exactly the speed of sound, the wave front and the 

disturbance travel together, forming the pattern shown in Figure 6.2c. Each 

successive wave reinforces the next wave, forming a wave front. This is a sound wave 
front, which is, by definition, isentropic. 

If the disturbance travels at greater than sonic velocity, it outruns the wave patterns 
which radiate out from the point where they were emitted, forming an oblique 
wavefront trailing behind the disturbance (Figure 6.2d). 
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FIGURE 6.2 SOUND WAVE PROPAGATION FROM A POINT SOURCE 
(6.1.160) 

6.9.1 MACH ANGLES 
This isentropic wave front (Figure 6.2d) is analogous to the oblique shock wave, and 

the angle between the wave front and the direction of the disturbance's motion is 

called the Mach wave angle or Mach angle, u . In the paragraph "Oblique Shock 

Waves," it will be shown that u is the smallest possible wave angle for any pressure 

disturbance. It is the angle of a zero strength shock wave (an isentropic shock wave) 

which is nothing more than a sound wave." The triangle formed by the Mach angle is 

called the Mach cone, and from the geometry of the Mach cone it can be seen that 
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dt       a      1 
Vdt       V      M 

where dt is a given time interval, and 

Mach Angle = \i = sin"1 — 

(6.20) 

6.9.2 ACTIVITY ENVELOPE 
The real significance of the propagation of sound waves relative to the speed of the 

disturbance is the envelope they describe. It can be seen that sound waves or 
pressure disturbances are not transmitted upstream when the Mach is equal to or 
greater than one. The pattern of Figure 6.2d illustrates the three rules of supersonic 
flow given by Von Karman, in 1947, in the Tenth Wright Brothers Lecture. These 
rules are based on the assumption of small disturbances. They are qualitatively 

applicable, however, to large disturbances. 

a. The rule of forbidden signals. The effect of pressure changes produced by a body 

moving at a speed faster than sound cannot reach points ahead of the body. 

b. The zone of activity and zone of silence. All effects produced by a body moving 
at a supersonic speed are contained within the zone of activity bounded by the Mach 

cone extending downstream from the body. Conversely, any arbitrary point in a 
supersonic stream can be affected only by disturbances emanating from source points 
lying on or within a cone of the vertex angle u extending upstream from the point 
considered. The region outside of the zone of activity is called the zone of silence. 

c. The rule of concentrated action. The effects produced by the motion of an object 

at supersonic speeds are concentrated along the Mach lines. Extrapolating this rule 

to large disturbances, we can observe its qualitative application in the concentration 

of effects along a shock wave accompanying a body at supersonic speeds. 

6.10   ISENTROPIC FLOW 
The isentropic flow process was defined as being both adiabatic and reversible. These 
conditions are very nearly met in one-dimensional, nonviscous, shock-free flow where 
both the cross-sectional area of the streamtube and the flow direction are constant or 
change very slowly. The non-viscous assumption is extremely important when flow 
in a channel is considered, since, in reality, boundary layer interaction causes 
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irreversible changes in flow properties, complicating analysis. 

The isentropic flow assumptions, while seemingly quite restrictive, are very useful 

when evaluating one-dimensional flow conditions existing outside of a boundary layer 

and between shock waves. Special relationships will be derived later in this chapter 

for evaluating the changes occurring because of shock waves. 

Valuable insight into a great number of real aerodynamic and fluid flow problems can 

be gained from the ability to predict isentropic changes and changes caused by shock 

waves in supersonic flow. A few of the isentropic flow equations will be derived from 
the one-dimensional, conservation equations. Many others can be derived when 

needed or may be found in most texts on supersonic aerodynamics and fluid dynamics. 

Since the stagnation properties PT , pT , and TT can be experimentally measured or 
calculated from energy concepts at any place in an isentropic flow, it is useful to 

obtain relationships between these stagnation properties and the free stream 

properties    of   the    flow    in    terms    of   a    function    of   Mach,    that    is, 

El  r   ^J  ,   II- f{M) 

Using Equation 6.7 , which was developed for adiabatic flow, 

V2 

hT = CpT+ ^ 

(6.7) 

V2 

(6.21) 

To write Equation   6.21   in terms of Mach, where   M2   =   V2 / yRT , divide the 

equation by Cp T 

TT    _   ,      , V2 

—L=l  + 
2CpT 
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=  1   + 
V2 

2CpT 

RCV 

RCV 

= 1 + R 
_2CV\ 

'   y2  ' 

.YRT. 

but 

R = Y - 1   since R = Cp - Cv and y = —^ therefore, 

Il-l Y-l Mz 

(6.22) 

This is a very important equation, relating stagnation temperature to freestream 
temperature in terms of flow Mach for an adiabatic flow process. Notice that the flow 

does not have to be isentropic for this equation to be valid. This equation should be 

recognized as the one used to determine the ambient air temperature, T., from flight 

test data 

■^2=1+ kt(y-l)^ 
Ta 

t 2 

(6.23) 

where kt is a recovery factor that describes the efficiency of the adiabatic flow process 

between the ambient air and the temperature probe. The two equations are identical 

when the recovery factor, kt, is equal to one, i.e., the probe is perfectly insulated from 
the ambient air. In reality, even the worst total temperature probes have a recovery 
factor greater than 0.98, and most exceed 0.99. In almost all cases the recovery factor 

values are very predictable and repeatable. 

To obtain an expression for PT/P as a function of Mach use Equation 6.12 
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T   _ Y-l 

(6.12) 

Substituting Equation 6.22 into this equation, 

12 = 
P 

1  +  l^M* 
2 

Y-l 

(6.24) 

Substituting Equation 6.22 into Equation 6.13, 

Zl = 
P 

1  +  lj±M> T-l 

(6.25) 

It should be noted that it is not necessary for the stagnation properties to actually 

exist at some point in the flow to write the equations relating them to the free stream 

pressure, density, and temperature. It is only necessary to assume that the flow at 

some given point could be slowed isentropically to zero velocity. 

It was previously stated that the stagnation properties remained constant throughout 

an isentropic flow. The proof of this statement begins with the fact that temperature 

is a direct measure of the internal energy of a flow. 

The internal energy of an adiabatic flow is constant since no heat is exchanged with 
the surroundings. If an adiabatic flow is slowed isentropically to zero velocity, the 

stagnation temperature measured would be a constant at any point throughout the 

flow. 

If viscous or other irreversible effects were present in the adiabatic flow, the 

stagnation temperature would still remain constant since no heat is exchanged with 
the surroundings. The presence of viscous and irreversible effects means that some 
of the kinetic energy of the flow is converted to thermal energy, but the stagnation 

temperature of the flow remains constant for reasons stated above. 

By integrating the entropy relation, rearranging terms, and evaluating at stagnation 

conditions 
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ST = In Y-l 
+ lnc 

It can be seen that PT is constant in isentropic flow, since ST and TT are constant. 

From the equation of state, PT = PTRTTT, it can be seen that Or is also constant in 

isentropic flow. 

Because PT, pT, and TT are all constants in isentropic flow, the ratio of free stream 

conditions at two different stations in the flow may be obtained by taking a ratio of 

stagnation properties evaluated at the two stations, i.e., 

PjP? 1 .    '  = PjP2 ■pjp;^ 

Resulting temperature, pressure and density ratios are shown below. 

■i  _ 
+ 1-1±M? 

V    -    1      7 
1  +    '   „     Ml 

(6.26) 

"l  *  l^Ml 
— 

1   *  Z±Ml 
(6.27) 

^1 = 
P2 

1 ♦ l^Ml 

TTlfS 
(6.28) 

Values of P/PT> p/pT, and T/TT are tabulated versus Mach (at y = 1.4 for air) in the 
appendices of most thermodynamics books. The same quantities are plotted versus 

Mach in Reference 6.4. 

Since Mach is a quantity that can be measured in the flow problem and stagnation 

properties are constant in isentropic flow, use of these charts and graphs greatly 

simplifies the work required to calculate P, p, and T at a given station in the flow. 
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6.11 FLOW   IN   CONVERGENT-DIVERGENT 
STREAMTUBES 
Understanding the characteristics of a compressible fluid flowing through a 
streamtube is very important in supersonic aerodynamics. If viscous effects are to be 

neglected in the streamtube, the boundary layer streamline may be used as the 
streamtube boundary. For this discussion a streamtube is denned as any convergent 

or divergent section bounded either by physical walls or by streamlines as shown in 

Figure 6.3.   Such a streamtube might be formed by the 

„ CONVERGENT. 
SECTION 

DIVERGENT- 
SECTION 

V 

+X- ® 
THROAT 

© 
ENTRANCE 

0 
EXIT 

FIGURE 6.3 CONVERGENT DIVERGENT STREAMTUBE 

inlet or exhaust duct of a jet aircraft or between converging and diverging streamlines 

as the air flows over the surface of the aircraft. Also, a supersonic wind tunnel uses 

convergent-divergent designs to obtain Mach greater than one in the test section. 
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Compressible flow through a convergent-divergent streamtube is quite different from 

the classical flow of an incompressible fluid through a venturi. At low velocities, the 
flow situation is almost identical to the venturi, but at high velocities the change in 
density causes a complete reversal of the low velocity trends. Consider steady, 

nonviscous, compressible, isentropic flow in the streamtube shown in Figure 6.3. In 

steady flow, the mass entering at Station 1 is equal to the mass leaving at Station 2, 

and the continuity equation may be used to describe the flow conditions 

dp   +   dV +   dA  = 0 

p V A 

(6.2) 

Substituting the definition of the speed of sound into the momentum equation as done 

in Equation 6.15 yields 

a2 dp + pVdV = 0 

(6.15) 

or 

dp  _   VdV 

Multiplying the right side by     _ 

p V 

and substituting this into the continuity equation above gives 

-M>H +  *L + i* = 0 
V V A 

(6.29) 
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** =   (W2-1)-£Y 
A V 

(6.30) 

Equation 6.30 describes the flow situation caused by compressible fluid flow in 
streamtubes. Defining a diverging streamtube as having a positive dA, i.e., an 
increasing area in the direction of the flow, and a converging streamtube as having 

a negative dA, the following conclusions can be drawn: 

1. When the Mach is less than 1, a diverging .streamtube causes a 

decrease in velocity, and a converging streamtube causes an 

increase in velocity. 

2. When the Mach is greater than 1, a diverging nozzle causes an 
increase in velocity, and a converging nozzle causes a decrease 

in velocity. 

3. When the Mach is 1, dA must be zero. 

6.11.1 COMPRESSIBLE STREAMTUBE FLOW 
Examining Equation 6.29 may give a physical understanding of what happens to 
subsonic or supersonic, compressible flow in a streamtube. 

T v 

(6.29) 
It can be seen that for Mach less than 1, a small change in velocity results in a 
proportionately smaller change in density. 

For air flowing at Mach of .3, .9, 1, and 2, consider the density effects caused by an 
arbitrary  10% increase in velocity (dV/V =  10%). 

At 

M=  .3;    ^P   = -0.9% 
P 
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AT =  .9;    .£[£  = -8.1% 
P 

M = 1;    i£ = -10% 
P 

M = 2;    ^P. = -40% 
P 

Notice that for all Mach, an increase in velocity results in a decrease in density. The 

magnitude of the density change is proportional to the Mach squared; consequently, 
as the Mach increases, the change in density becomes more pronounced. 

It is interesting to note that Equation 6.29 indicates the validity of the incompressible 
flow assumption. It shows that at low Mach, a change in velocity results in a very 

small change in density, and as the Mach increases, the assumption becomes poorer, 

until at Mach 1, the change in velocity is of the same magnitude as the change in 
density. 

6.11.2 AREA CHANGES 

To further the analysis, an equation must be obtained relating density change to area 

change as a function of Mach. If in the derivation of Equation 6.30 the value of dVTV 

had been substituted instead of dp/p, the following relation would have been obtained 

dA i"1 dp 
P 

In the preceding discussion, it was found that for subsonic and supersonic Mach the 

density always decreased for increased velocity. This leads to the question, what 
shape is required to produce this decrease in density and increase in velocity? From 

Equation 6.31 it can be seen that for subsonic speed (M < 1), a decrease in density 

(and an increase in velocity) is caused by a converging duct (negative dA). That is, the 
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factor ( X\-l   is positive for subsonic speeds. Supersonic, this factor is negative; 
\~&\     J 

therefore, a diverging duct (positive dA) causes a decrease in density (and a 

corresponding increase in velocity). 

Qualitatively speaking, the decrease in density is a second order effect and can 

usually be neglected for flow at low Mach because a reduction in area creates only a 
proportional increase in velocity. At high subsonic speeds, the reduction in density 
becomes more significant, but the density still is able to decrease fast enough to allow 

the velocity to increase as the fluid flows into a converging duct. At supersonic 
speeds, the density does not decrease fast enough in a converging section; therefore 

the nozzle must diverge to further reduce the density and allow an increase in 

velocity. 

Only the case of accelerating flow has been considered, but it is obvious that the 

reverse of the described conditions is also true. That is, a subsonic stream is slowed 
down by a diverging section, and a supersonic stream is slowed down by a converging 
section. The general conclusions of the convergent-divergent streamtube problem may 

be summarized as shown in Figure 6.4. 
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INCOMPRESSIBLE 
(SUBSONIC) 

CONVERGING 
INCREASING VELOCITY 
DECREASING PRESSURE 
CONSTANT DENSITY 

DIVERGING 
DECREASING VELOCITY 
INCREASING PRESSURE 
CONSTANT DENSITY 

COMPRESSIBLE 
(SUPERSONIC) 

CONVERGING 
DECREASING VELOCITY 
INCREASING PRESSURE 
INCREASING DENSITY 

DIVERGING 
INCREASING VELOCITY 
DECREASING PRESSURE 
DECREASING DENSITY 

FIGURE   6.4   COMPARISON   OF   COMPRESSIBLE  AND   INCOMPRESSIBLE 
FLOW  THROUGH A CLOSED  TUBE   (6.2:205) 

6.11.3 FLOW AT THE THROAT 

The flow in a convergent-divergent streamtube has been discussed at some length, but 

now the specific flow characteristics at the throat of the streamtube must be studied. 

The minimum cross-sectional area of a convergent-divergent streamtube is called the 

throat. At the throat the area change per length of travel along the streamtube stops 

decreasing and starts increasing. At this section, the derivative dA/dx = 0, or dA = 

0. Two conditions can exist at the throat since dA is zero. Either dV and/or 

(M2 - 1) must equal zero to satisfy Equation 6.30. 

The first condition, dV = 0, is characteristic of flow in a subsonic streamtube in which 

the fluid accelerates to a maximum subsonic speed at the throat and then decelerates 
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again in the divergent section. It is also characteristic of supersonic flow which 

decelerates in the converging section, reaching a lower supersonic or exactly sonic 

velocity at the throat and then accelerates again in the divergent section. 

The second condition, (M2 - 1) = 0, is characteristic of what is called choked flow. It 

occurs when M = 1 at the throat. This condition exists whenever the flow is 
accelerated from subsonic to supersonic speeds by a nozzle or when flow is decelerated 

from supersonic to subsonic speeds by a diffuser. By definition, a nozzle accelerates 

flow, while a diffuser decelerates flow, although each is similar in appearance. 

Flow through a streamtube is caused by a pressure differential between the inlet and 

exit. Increasing the inlet pressure or lowering the exit pressure causes an increase 
in the flow velocity and the mass flow rate. Since the maximum subsonic velocity 
occurs at the throat, sonic velocity (M=l) is attained first at the throat, and further 
reduction in exit pressure will not increase the velocity at the threat. This may be 
seen by considering the mechanism which causes a change in the mass flow rate and 
the flow velocity in the convergent-divergent streamtube (Figure 6.5). 

If the exit pressure is exactly equal to the inlet pressure, no flow will occur. There are 

three critical values of exit pressure for a given inlet pressure. Between pressure 
equilibrium and first critical pressure, the flow will accelerate in the convergent 
portion of the streamtube and then decelerate through the diverging portion, 
remaining subsonic throughout. This is called the venturi regime. If the pressure is 
reduced to the first critical pressure at the exit, the flow will accelerate through the 

convergent 
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FIGURE  6 5  PRESSURE  AND  MACH  VARIATION  THROUGH  A 
COGGING-DIVERGING STREAMTUBE (6.3:157) 

potion, reach snnic velocity at the throat, and then decelerate hack to a subsonic 
value. Once sonic conditions have been attained at the throat, farther reducfons n> 
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exit pressure will not affect what happens upstream of the throat. The maximum 

mass flow rate has been achieved for that inlet pressure, and the streamtube is said 

to be choked. Further reduction in exit pressure beyond the first critical point will 

produce a normal shock somewhere in the divergent portion of the streamtube until 

the second critical pressure is reached. At the second critical pressure, a normal 

shock stands at the exit plane. Further reduction in exit pressure beyond the second 

critical value will produce oblique shocks or a combination oblique-normal shock 

outside the streamtube as shown in Figure 6.6a. This is called the overexpanded 

condition, indicating that the streamtube is too long, and will occur until reaching the 

third critical pressure. The third critical value is the only pressure for which no 

shocks occur anywhere in the streamtube flow field, and supersonic flow is maintained 

downstream of the throat. This is the on-design condition. Further reduction in 

pressure below the third critical valve is an underexpanded condition, indicating the 

streamtube is too short, and expansion fans will form outside the streamtube as 

illustrated in Figure 6.6b. 

'-'■' f - - r - -s^uj \ oounGary^- 

(ö) Overexpanded supersonic nozzle 

—     flowcenterline 

boundarv./ 

(b) Underexpanded supersonic nozzic 

FIGURE      6.6     PRESSURE     ADJUSTMENT     OUTSIDE     A     NOZZLE     OR 
STREAMTUBE    (6.3:219,220) 

6JL1.4 MASS FLOW EN A CHOKED STREAMTUBE 

The mass flow rate of a gas (m = pVa) increases with increasing pressure differential 
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between the entrance and exit of a subsonic, converging-diverging streamtube until 

sonic velocity is attained in the throat. When sonic velocity is reached, it has been 
shown that the velocity and density at the throat are fixed; consequently the mass 
flow rate, {).m, is fixed or the streamtube is choked. Sonic velocity is the maximum 

velocity that can occur in the throat; therefore it fixes the maximum mass flow 

through the streamtube for given entrance conditions. 

This should not be interpreted to mean that a choked streamtube is passing the 
maximum mass flow for the streamtube; it is passing the maximum mass flow for 

given entrance conditions. Since the streamtube was assumed isentropic, this is the 

same as saying a choked streamtube is passing the maximum mass flow for given 

stagnation conditions. 

A choked streamtube makes an excellent metering device for gaseous fluids. By 

adjusting the stagnation or entrance conditions, the exact mass flow can be measured 

and calculated. In reality, a well designed metering streamtube passes within 2 - 3% 
of the mass flow calculated for an isentropic streamtube. 

An equation for the mass flow rate through an isentropic streamtube can be derived 

by substituting appropriate values into m = pVA: 

^7    R 
M 

(i ♦ "-» 
217-D 

(6.32) 

If the streamline is choked, M = 1 and A = Aa^^ = A : 

P. 
A   =    —   AtAro«t, fl(-^)l"^] 

(6.33) 

6.11.5 LOCAL SONIC CONDITIONS 
When a streamline is choked, specific values for P, p, T, A, etc., are determined at the 
throat. These unique values are designated with a superscript, *, and are written P\ 
p*( T*, A*, etc. The concept of the local sonic area, A*, where M = 1, is similar to the 

stagnation condition concept. Both refer to flow conditions at some specific Mach, i.e., 

M = 1 for local sonic conditions and M = 0 for stagnation conditions. 
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It is not necessary for the flow to be actually at Mach 1 to define the local sonic 

values. To determine local sonic conditions at some point in a flow, it has to be 
assumed that the area of the channel could be varied to the value A*. When this is 
done, the prevailing conditions at the section with area A* are local sonic conditions. 

For instance, in an isentropic flow, A* can be imagined at any point, that is, the 

channel can be reduced in area to that which would reduce a supersonic stream to 

Mach 1 or increase a subsonic stream to Mach 1. 

Properties at local sonic conditions in an isentropic flow may be conveniently 
evaluated in terms of stagnation conditions, which are usually known or easily 

measured. The general procedure is to evaluate the identities 

P* p* 
r* = -jp- 

using Equation 6.24 

T    _ + X±w 

and that local sonic conditions are defined where M = 1, gives 

(6.24) 

PT = i + xi 

and 

P* = 
+   Y-l 

1    T 

(6.34) 

The P* and T* can be easily derived, and for air, y = 1.4, the local sonic properties as 

a function of stagnation properties are 
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P* = PT (.528) 

(6.35) 

p* = pr (.634) 

(6.36) 

r = TT (.833) 

(6.37) 

6.11.6 M* 
The concept of local sonic conditions allows a dimensionless parameter, M\ to be 
defined. Mach, M, is a very convenient parameter but has the disadvantages listed 

in the paragraph, "Mach." 

Often it is convenient to work with the parameter M*, which is the flow velocity V, 

divided by a*, the speed of sound at local sonic conditions. 

a' 

(6.38) 

It should be noted immediately that M* does not mean Mach at a place where 

M = 1 like all other starred quantities but is defined by Equation 6.38. 

Unique relations between M and M* can be derived for adiabatic flow using the 

definition of M* and the energy equation for a perfect gas (refer to Appendix F, 

Derivation F.5) 

l + Xiw2 

(6.39) 
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Y- 
2 .M'2 

M2 = 
i - X±/r2 

(6.4 
1 - Hl*f2 

Y+l 

0) 
From these two equations it can be seen that M* is a simple index of when the flow 

is subsonic and when the flow is supersonic, i.e.: 

when 

Af < 1;       AT* < 1 

M > 1;       M' >1 

M = 1;       M* = 1 

M = 0;        W* = 0 

Af = oo       Af* = 111    = /6   (for air) 
N Y- 

Equation 6.39 is tabulated in Reference 6.4, and if M*  is known,  then M can be 
found or vice versa. Using M* will greatly simplify the normal shock equations. 

6.11.7 AREA RATIO 
Just as it is convenient to work with dimensionless parameters P/PT, etc., it is 

convenient to use a dimensionless area ratio, A/A*. Equating Equation 6.32 and 6.33, 

this parameter is found to be 
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_A   =   1 

A*        M iw)( i + Xltf 
y+1 

7TTTT 

(6.41) 

and is always greater than one. For a given value of A/A*, there are always two 

values of M, one for subsonic flow and the other for supersonic flow. 

6.12   NORMAL SHOCK WAVES 
Shock waves are observed as a discontinuity between supersonic and subsonic flow. 

The flow passes from supersonic to subsonic speeds in an extremely short distance 

which is of the order of magnitude of the mean free path of the molecules in the flow. 

The kinetic energy of the supersonic, upstream molecules is instantaneously converted 

to pressure-volume (pv) and thermal energy. 

Experimental studies of normal shocks in supersonic wind tunnels show fivefold 

pressure increases and threefold velocity decreases behind the shock. These changes 
occur in a distance too small to be measured on a photographic plate, but theoretical 

calculations and experimental measurements indicate a distance of the order of 10 

inches. 

Because changes due to a normal shock occur in such a short distance, the changes 
are highly irreversible, and a shock wave is not isentropic. Two valid assumptions 

made when studying normal shocks are that: 

1. The flow through a shock is adiabatic. 

2. The shock is very thin and has a constant cross-sectional area between the 

front and rear face. 

With these two assumptions and the conservation equations (see "One-Dimensional 

Flow Approximation"), the changes in flow properties caused by a shock can be derived 

as functions of Mlt i.e., P2/Px, p^plf T/Tlf M2. These derivations are conceptually 

simple but involve lengthy mathematical equation juggling which is carried out in 
most textbooks on compressible flow; therefore only the results of the derivations will 

be listed (refer to Appendix F, Derivation F.6). 

A pictorial representation of a normal shock and the change in flow properties across 

the shock is shown in Figure 6.7. 
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ISENTROPIC FLOW - >•©-*! 1-0 ISENTROPIC FLOW 
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NORMAL SHOCK 

FIGURE   6.7   FLOW PROPERTIES   IN  THE VICINITY  OF A NORMAL 
SHOCK 

6.12.1 NORMAL SHOCK EQUATIONS 

The notation used to describe the flow situation must be established before listing the 

normal shock equations.  For these relations, the following assumptions were made: 

1.   All property changes occur in a constant area 

2.    Flow across the shock is adiabatic 

3.    Flow upstream and downstream of the shock is isentropic 

2   _ 1 - Y + 2 Y Af? 

1+Y 

(6.42) 

£i  = 
Pi 

2 +   (Y-l)«? 
U 

(Y+l)wf 
(6.43) 
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l - Y + 2y M? 
l+Y 

2 + (Y-i) £ 

(l+Y) *£ (6.44) 

Wf = 
tf Y=T 

i*M?   -1 Y-l    / 

Values of PJPlt p^px, T/T^ and M2 are tabulated versus Mach, Mlt (at y = 1.4 for 
air)in the appendices of most thermodynamic books. The same quantities are plotted 

versus Mach in Reference 6.4. 

6.12.2 NORMAL SHOCK SUMMARY 
A shock wave is an extremely thin discontinuity which forms between supersonic and 

subsonic flow. The shock wave is an adiabatic process with no stagnation temperature 

loss across it, but as can be shown by entropy considerations, there is an 

accompanying stagnation pressure loss. 

Supersonic flow always exists upstream of a shock wave, and the upstream stagnation 

pressure is greater than the downstream stagnation pressure. 

General flow properties can be compared and tabulated as 

Vx > V2 Sx < S2 

TTl =  TT2 Pi   <   P2 
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\   >   PT2 
MX   >   M2 

Pii > Pr2 
ai < a2 

* _      -* * rx < T2 a\ = a 2 

Px < P2 M\ > M\ 

A\ < A\        T\ = r2 

p\ ;> P*2       p\ £ p* 2 

6.13   SUPERSONIC PITOT TUBE 
The loss in stagnation pressure across a normal shock affects the stagnation pressures 

sensed by aircraft pitot static systems (Figure 6.8). 
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FIGURE 6.8 PITOT TUBE IN SUPERSONIC FLOW 

To determine Mach from free stream static pressure and stagnation pressure behind 
a normal shock standing in front of a pitot tube, the Rayleigh Pitot Relation is often 

used 
Pn 

Pi 

lib*? 
2 

Y+T 
_   Y-l 

(6.46) 

By measuring Pj and PT , M, can be determined, and in many compressible flow 

textbooks, these values are plotted versus M, for yair= 1.4. 

When using Equation 6.46, the free stream static pressure must be measured in front 
of the shock wave. This is a very difficult procedure for an aircraft in supersonic 
flight.  Experiments have proven that if the static source is approximately ten pitot 
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tube diameters behind the shock wave, the static pressure measured is quite close to 

free stream static pressure. 

On the pitot booms of supersonic aircraft, static pressure measuring holes will be 

found at varying distances from the end of the boom. The location of these holes 

usually has been determined experimentally to produce the closest approximation of 

free stream static pressure in supersonic flight. 

6.14   OBLIQUE SHOCK WAVES 
In the last paragraph on normal shocks, shock wave theory was presented, and the 

thermodynamic and kinematic changes that occurred when the flow traversed a 

normal shock were studied. Next, the changes that occur when flow passes through 

an oblique shock must be considered. 

A normal shock is a special form of a pressure discontinuity in a fluid. In general, the 
discontinuities observed experimentally are inclined to the free stream velocity and 

are called oblique shocks. 

Oblique shocks occur in supersonic flow because continuous compression waves caused 
by a concave, curved surface in the flow tend to merge, forming an oblique 

discontinuity at a finite distance from the surface. 

When flow is forced to change direction suddenly at a sharp concave 
corner, an attached, oblique shock forms at the corner. Oblique shocks occur in almost 

all supersonic flow situations of practical interest, but the mere existence of 

supersonic flow does not imply that there must be shock waves somewhere in the flow. 

Developing the relations between the fluid properties on the two sides of an oblique 
shock is not as formidable a task as it might seem, because many of the normal shock 
equations with a slight modification apply equally well to oblique shocks. 

Suppose a stationary observer sees the flow at Station 1 suddenly decelerate and 
compress to the conditions at Station 2 because it has traversed a normal shock wave 

(Figure 6.9). 
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FIGURE 6.9 SHOCK PROCESS AS SEEN BY STATIONARY OBSERVER 

Next, imagine that the observer moves along the shock wave with a velocity Vt. The 
moving observer would see a flow situation in which the shock is inclined to the free 

stream flow and in which the flow undergoes a sudden change in direction when it 

crosses the shock (Figure 6.10). 
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FIGURE 6.10 SHOCK PROCESS AS SEEN BY MOVING OBSERVER 

The oblique flow pattern constructed in this manner has equal tangential velocity 
components, Vt, on both sides of the shock. By placing a solid wall along one of the 
streamlines in Figure 6.10 and rotating the picture so that incoming velocity, Vlf is 
horizontal, the supersonic flow situation in the neighborhood of a concave corner is 

described (Figure 6.11). 

STREAMLINE 

WWW \\\\\ 
FIGURE 6.11  SUPERSONIC FLOW INTO A CORNER 
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By imparting a uniform velocity to the flow field along any shock, a straight segment 

of an oblique shock may be transformed into a normal shock. To fix this concept, 

consider the falling rain in Figure 6.12. 

STATIONARY 
OBSERVER 

FIGURE   6.12 ANALOGY TO AID UNDERSTANDING OF  OBLIQUE 
SHOCKS 

Relative to an observer at rest, the rain is falling vertically. Relative to an observer 

moving perpendicular to the rainfall, the rain is descending at an angle. 

Let the rain be slowed down instantaneously at some altitude. An observer in a 
balloon at this altitude sees the rain falling vertically and slowing down at this level 
as shown by the single lines in Figure 6.12. The pilot of an aircraft traveling with a 

horizontal velocity Vt at this altitude sees the path of the raindrops as though they 

were being deflected as they pass through this level (double lines in Figure 6.12). The 

pilot's observation is also correct, for relative to the aircraft the drops are being 

deflected. Essentially, the velocity of the aircraft has been superimposed upon the 

changing velocity of the raindrops. 

A careful comparison of Figures 6.9 and 6.10 will show that the thermodynamic 

properties of P, p, T, a, and S are unchanged by the motion of the observer. On the 
other hand, Vlf Mv PT , and TT are altered when the observer's motion Vt is 

superimposed on the normal shock flow situation. 
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The magnitude of Vt is arbitrary and depends upon the angle the oblique shock makes 

with the horizontal streamline in front of the shock and the velocity of the 
approaching flow. This presents an additional degree of freedom in the oblique shock 

relations. 

An additional degree of freedom means that although only one independent 
parameter, i.e., approach Mach, Mx, is required for normal shock relations, two 

independent parameters are required for oblique shock relations, i.e., My and wave 

angle, 0. 

6.14.1 OBLIQUE SHOCK RELATIONS 
Since a shock appears to be normal or oblique depending upon the relative motion of 
the observer, the differences between normal and oblique shocks can be explained in 

geometric terms. 

The flow orientation, flow notation, and angle descriptions used when modifying the 

normal shock equations are shown in Figure 6.13. 

The number of degrees the flow must turn due to the concave corner is called the 

turning angle or wedge angle, 8. The angle the oblique shock makes with the 
incoming (upstream) streamlines is called the shock wave angle, 8. Conditions 
upstream of the oblique shock have the subscript 1, and conditions downstream have 

the subscript 2. 
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FIGURE 6.13 ANALYSIS OF VELOCITY COMPONENTS ACROSS AN 
OBLIQUE SHOCK 

From this figure, it can be seen 

A^w = J^ sinG 

(6.47) 

where 

M^  = Flow Mach in front of an oblique shock 

M^ = Flow Mach in front of a normal shock 

Consequently, all of the normal shock equations except those relating to total 
properties, can be modified to apply to oblique shocks by substituting Mx sin 0 

everywhere Mx appears.   The oblique shock equations are 
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p,       1-y + 2y Wi sin29 

*i 1+Y 

6.45 

(6.48) 

2  = 
2  +   {y-1)  Affsin29 

(Y+l) Af? sin29 
(6.49) 

J-2 MrW?sin*9  - 111 Y-l 
Y+T       (y+l)A^sin29 

(6.50) 

Mi sin29 + 
M2

2sin2(9 - 5)  =- 
Y^T 

21 M2sin29 - 1 

T2     _ 

1 

Y-l + 2 
7+^        (Y+l)wfsin29 

_£Y ^sin29 - Hi 
y?T Y

+1
. 

(6.51) 

(6.52) 

6.14.2 MINIMUM AND MAXIMUM WAVE ANGLES 
In the normal shock analysis, it was found that a shock can only occur when the free 
stream Mach is greater than one. The same is true for oblique shocks; the free stream 

Mach component normal to the shock must be greater than one. 

The minimum wave angle for a given free stream Mach of Mx > 1 can be found from 

Equation 6.47 

M1N = M,sin9 = 1 

or 
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o •     -1     1 
(Mi") M 

(6.53) 

Notice that the minimum oblique shock wave angle, B^n» for the given free stream 
Mach, M1( is the same as the Mach angle, u, (Equation 6.20) formed by an isentropic 

pressure disturbance traveling at Ml > 1. 

This shows that an oblique shock wave at minimum wave angle to the free stream 

flow is a zero strength or isentropic shock. This lends additional credence to our one- 

dimensional flow assumption, for gentle turns. 

The maximum oblique shock wave angle for a given free stream Mach is 90°. This is 

the limiting case and is a normal shock. 

6.14.3 RELATION BETWEEN 6 AND 5 

From Figure 6.13 

V 
tanö - ___ 

Eliminating V, from these equations, (since V^ = Vlt) then using the continuity 
equation, Equation 6.49, and a great amount of algebraic and trigonometric 

manipulation: 

tan(6 - S)   =    (Y-l)M?sin28 + 2 
tanö (Y + i)wfsin20 

(6.54) 

For a given Mlf Equation 6.54 is an implicit relation between 9 and 5. It may be 
rewritten to show the dependence of 8 explicitly (after much trigonometric 

manipulation). 

Aff sin2 6 - 1 
tan 6 = 2 cot 9 

/£   (Y + cos 2 9)   + 2 
(6.55) 

This equation may be solved for various combinations of Mach, M^ and wave angle, 
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9, and plotted as in Figure 6.14. 

»o 

o 
z < 
a 
z 
z 

FIGURE 6.14 TURNING ANGLE AS A FUNCTION OF WAVE ANGLE FOR 
FLOW THROUGH AN OBLIQUE SHOCK 

Careful study of this figure will reveal several points of great interest when analyzing 

the flow through an oblique shock wave.. 

The existence of a maximum and minimum wave angle is verified by the fact that 
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Equation 6.55 becomes zero at 9 = Jt/2 and at 9 = sin"1 l/M^. 

The turning angle, 5, has a maximum value for a given value of Mv Turning angles 
larger than this maximum angle cause the oblique shock to detach from the surface 

at the concave corner.   If 8 is less than 8m„, an attached oblique shock will form. 

There are two possible oblique shock solutions for a given turning angle, 8, and a 

given Mv The weak shock solution is represented by the solid lines in Figure 6.14, and 

the strong shock solution by the dotted lines. 

The strong shock solution (the oblique shock with the greater wave angle) is 

characterized by subsonic flow downstream of the shock and by large energy losses in 

the shock. As a general rule, systems in nature tend to minimize their losses; 

therefore the weak shock occurs more frequently. However, there is no known 
mathematical law which predicts the type of shock that will occur for a given free 
stream Mach and a given turning angle. The locus of points for which the Mach 
behind the shock, Mj is equal to one is also plotted. It can be seen that the Mach 
downstream of a weak shock is usually supersonic, but in a small region 
(cross-hatched) near 8m„ for a given free stream Mach, the Mach downstream of a 

weak shock can be subsonic. 

The wave angle, 9, is generally the unknown   quantity in analytical work and is 

conventionally plotted versus Mt for different turning angles, (Figure 6.15). 

From this figure, three important points can be noted: 

1. There is a minimum allowable flow Mach for a given turning angle, below 

which the oblique shock will detach from the surface. 

2. The wave angle of a week shock decreases with increased free stream Mach, 

while the wave angle of a strong shock increases (approaching 90 degrees) with 

increasing Mach. 

3. For a given free stream Mach, the wave angle 9 approaches the mach angle 

as 5 is decreased. 
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FIGURE 6.15 WAVE ANGLE AS A FUNCTION OF MACH FOR FLOW 
THROUGH AN OBLIQUE SHOCK 

Because of the complexity of the equations for normal and oblique shock waves, it is 
common practice to use tables or charts of their solutions when solving a compressible 

flow problem. An excellent set of charts is in reference 6.4. 

6.14.4 MACH LINES 
Considering that portion of figure 6.14 where Mj > 1, a decrease in turning angle 
8 corresponds to a decrease in wave angle 9. When 8 becomes zero, 9 reaches the 

limiting value given by equation 6.53 which was previously shown to be the Mach 

angle u (equation 6.20). 

Bin = sin"1 _ = |X 
mm Mi 

(6.53) 

Analyzing the strength of the oblique shock formed at zero turning angle, with the 
oblique shock relations, Equations 6.48 through 6.52, it can be seen that the so-called 

"shock" has zero strength, or that no physical discontinuity in the supersonic flow 

exists. 

For any point in a supersonic flow, there is a characteristic angle associated with the 
Mach of the flow at that point. This angle is the Mach angle u. Lines drawn at an 
inclination of u at a point in the flow are called Mach lines or sometimes Mach waves. 
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6.15   ISENTROPIC COMPRESSION 
A shock wave compresses supersonic flow by increasing the pressure and density of 
the fluid in a very short but finite distance. A simple method to compress supersonic 

flow is to deflect the flow boundary into the flow through an angle, thereby creating 

an oblique shock wave through which the flow must pass. 

By dividing the total boundary deflection into several small segments of A8, the 

compression can be visualized as occurring through several successive oblique shocks 

which divide the flow field near the boundary into segments of uniform flow (Figure 

6.16). 

WWWWWv 

\\\\\\^ 

FIGURE 6.16 ISENTROPIC COMPRESSION 

In each region between oblique shocks, the supersonic flow is independent of the 
regions upstream and downstream, making it possible to analyze the flow field region 

by region. Using the approximate equation for weak shocks to compare the one shock 
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compression to the multi-shock compression, it can be shown that for each wave 

AP« A5 

AS -  (A5)3 

If there are n segments being considered in the complete turning angle then 

8 = nA8 

and 

^TOTAL « nA5 « 8 

AS
TOTAL - n(A8)3 » nA8(A8)2 - 8(A8)2 

Thus, if a large number of weak waves cause the compression, the entropy increase 
is reduced drastically compared to a one shock compression for the same total turning 
angle. 

By making A8 smaller and smaller, a smooth turn with A8 -* 0 is created in the limit, 

the entropy increase becomes zero, and the compression can be considered isentropic. 

This limiting process produces the following results: 

1. The oblique shocks approach zero strength and become straight Mach lines. 

2. Each region of uniform flow approaches the width of a Mach 

line; thus on each Mach line the flow inclination and Mach are constant. 
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3. The flow upstream of each Mach line is not affected by downstream changes 

in the wall. 

4. The approximate equations for changes in properties across weak waves may 

be written in differential form, i.e., AP becomes dP. 

The above discussion considers flow near the boundary of the supersonic flow field. 

Farther away from the wall, due to the convergence of Mach lines, the flow is no 

longer isentropic, and the Mach lines converge, forming an oblique shock wave. 

6.16   ISENTROPIC COMPRESSION 
When the boundary of a supersonic flow is deflected into the flow, the flow is 

compressed. If the deflection is abrupt, an oblique shock wave forms in the corner. 

If the deflection is smooth, an isentropic analysis of the compression may be 

performed. 

What happens when the boundary is deflected away from the supersonic flow? If a 
single oblique shock wave formed and the flow expanded through it, this would 

require that the normal component of velocity after the shock be greater than the 

normal component of velocity ahead of this shock, i.e., an increase in velocity through 

the shock (Figure 6.17). This is in direct violation of the second law of 
thermodynamics because it demands a decrease in entropy (refer to Appendix F, 

Derivation F.7), even though the equations of motion are satisfied. 
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!! IMPOSSIBLE U 
ENTROPY CANNOT DECREASE 

/////////////A 

FIGURE 6.17  IMPOSSIBILITY OF SHOCK FORMATION FLOW 
TURNING AWAY FROM ITSELF 

Actually, the same nonlinear effect that makes Mach lines converge in a compression 
makes the Mach lines diverge in an expansion, and the supersonic expansion is an 

isentropic phenomenon throughout. 

Consider the expansion of supersonic flow caused by the boundary deflection A5 in 

Figure 6.18a. 

If P2 is less than Px, the disturbances from the lower pressure will be transmitted out 

into the stream. 

The pressure P2 will not be transmitted upstream since the flow is supersonic, and it 
will only be felt as far upstream as the Mach line extending out from the corner into 

the flow. 

When the flow passes this Mach line, it will sense the lower pressure and will tend 

to turn and accelerate because of the pressure differential. Associated with the flow 
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velocity increase is a pressure decrease which changes the flow properties immediately 

following the Mach line and consequently defines a new Mach line upstream of which 

the influence of P2 cannot be felt. Hence, the flow gradually increases velocity and 

changes direction through an infinite number of these Mach lines, forming a fan 

shaped array referred to as a "Prandtl-Meyer expansion fan" as shown in Figure 

6.18b. 

/ 
MACH UNE 

(A) MACH UNE ILLUSTRATION 

7/77777777777, 
(B) PRANDTL-MEYER 

EXPANSION FAN 

FIGURE 6.18 SUPERSONIC FLOW AROUND A CORNER 

As the Mach increases through the first line and the pressure decreases, the approach 

of subsequent pressure signals is altered slightly by the increased Mach, thus causing 

the next Mach wave to be more inclined to the free stream.    The Mach angle 
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calculated for the last Mach line is that calculated from the final Mach, M2, after the 

turn. 

Supersonic expansion occurs not only at abrupt corners but also on smooth surfaces. 

In this case, the fan is distributed over the entire curve as shown in Figure 6.19. 

SEB1ES 0?&*#*0H 

Vrf^ES 

7-/-/-/- C^ 
/• 

FIGURE   6.19 SUPERSONIC FLOW AROUND A SMOOTH CORNER 
(6.2:212) 

Further insight into the reason for the finite distance required to accelerate the flow 

around the corner might be gained from a physical interpretation of the acceleration 

itself. An instantaneous change in velocity and direction around the corner would 

mean that there was an infinite acceleration for a given mass of fluid. But from 

Newton's law, F = ma, an infinite acceleration requires an infinite force or pressure 

gradient, and no such source of energy is present; therefore the acceleration cannot 

be instantaneous.  The equation 

Av 
v 

Av 

^F 

is an approximate expression relating the velocity change through an isentropic Mach 

wave to incoming Mach, M1( and expansion angle, Av. Derivation of this equation is 

tedious and will be omitted.   It may be found in many aerodynamic textbooks on 
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supersonic flow. 

For small values of Av and AV, Equation 6.56 may be written in differential form 

+dv = \JM
2
-1 

dV 

and integrated 

+v + const =  f \JM2-1    -^ = v (W) 

To evaluate the integral and thus find an explicit form of v(M), V must be rewritten 

in terms of M using the following relationships 

V = aAf 

al yRTT      1 

a2 yRT 

from which 

dV _ 
~V 

dM +   da 

therefore 

_i = r = l + ULM
2 

dM 
~M 

+  Y-i M2 

V(W)   =     J 
M 

\JM2-1 

+   Y- iw2W 
dM = Vfln-I - Vinitial 

This integral may be evaluated between two Mach numbers and is called the 

Prandtl-Meyer function 
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V(M)   = Hi.     tan- 
\~yz^ \~y+T 

lZl (W2-l)       -tan"Vw2-l 

To simplify analysis the constant of integration was chosen such that v^t = 0 when 

Mjnjt = 1. Thus, for every supersonic Mach there is a corresponding angle v which 

represents the angle through which a flow that is initially at Mach 1 must turn to 

achieve that supersonic Mach. 

6.16.1 SUPERSONIC INITIAL CONDITIONS 

If Mx prior to turning is greater than Mach 1, the associated vx is greater than zero. 

To find the Mach following a turn through an angle Av, it is necessary to add Av to the 

v corresponding to Mt and find the final Mach, M2, corresponding to v. In equation 

form, this may be written 

v2 « vx + |Av| 

(6.58) 

where Av is the turning angle shown in Figure 6.18a. Absolute values of Av are used 

to avoid any confusion associated with the sign of the turning angle. 

Tables for solving two-dimensional isentropic expansion problems may be found in 
Reference 6.4 and Figure 6.20 outlines the method to be used. Once the Mach after 
expansion is known, all of the supersonic flow properties may be calculated from 

isentropic relations. 

Consider the problem of Mx = 2 flow expanding through an angle of 24°. What is the 

Mach after the turn?   Enter Figure 6.20 with Mx = 2 and find vx = 26°. This is the 

angle Mt = 1 flow must turn through to reach a value of Mach two. Adding vy 

+ Av and reentering the figure at this value of 50°, M2 can be found to have a value 

of Mach three. 

6.16.2 MAXIMUM TURNING ANGLE 
If the Mach in Equation 6.57 goes to infinity, which corresponds to expanding 

supersonic flow to zero pressure, the maximum turning angle is obtained 
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"2 N 
Y+l    _ i 

(6.59) 

Thus a flow that is initially at Mach 1 can turn 130.5°. But a stream that is initially 

at 2.5 Mach can turn only 90°. The higher the initial Mach, the lower the turning 

capability. Using Equations 6.58 and 6.59, an expression for the turning capability, 

Vfc, of the flow can be obtained. 

vtc 
avBX-vl 

Attention is called to the fact that these are the theoretical angles at which the flow 

will leave the surface for any initial Mach and that very high deflection angles are 
indicated at all Mach. In practice, real fluid effects such as boundary layer and 

viscosity will greatly reduce the angle at which the flow will leave the surface. 

Table 6.1 summarizes the characteristics of the three wave forms encountered in 

supersonic flow. 

FIGURE 6.20  TURNING ANGLE AS A FUNCTION OF MACH FOR 
PRANDTL-MEYER FLOW 
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TABLE 6.1 SUPERSONIC WAVE CHARACTERISTICS (6.2:213) 

6.17 INTERACTION OF WAVE FORMS 
Successive oblique wave forms may interfere with one another.    Four cases are 

possible: 
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1.        Expansion followed by expansion 

2.        Compression followed by compression 

3. Compression followed by expansion 

4. Expansion followed by compression 

This discussion is limited to two-dimensional analysis. 

Case one is most easily analyzed because there are no interference effects. This can 

be seen with reference to Figure 6.21. The final effect is equivalent to flow over a 

rounded corner with the same total deflection angle. 

FIGURE 6.21 TWO EXPANSIONS (6.5.132) 
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FIGURE 6.22 TWO COMPRESSIONS (6.5.133) 

When one oblique shock is followed by another, as in Figure 6.22, interaction must 

occur and results in a single shock of increased intensity at some distance away from 
the wall. Recall that the Mach after an oblique shock is always decreased and the 
flow is bent toward the wave. A second oblique shock generated behind the first with 
a subsequent second change in flow direction increases the shock wave angle because 
of the reduction in stream velocity, and the wave will be tilted toward the first oblique 

shock due to the initial deflection. Therefore, the two shock lines must intersect. The 

intersection of the two separate waves must form a wave which has the same angle 
as that applying to a wave formed by a single intersection of the initial and final 

surfaces. The wave formed by the combination is therefore stronger than either one 

alone. 

If we have an oblique shock followed by an expansion, we must also have an 
intersection. Because of the nature of expansion waves, the intersection will be a 

diffuse effect which tends to weaken the shock at points away from the surface. 
Because the velocity of the wave is dependent upon its intensity, the weakening effect 

in the regions away from the surface will reduce the propagation velocity and cause 
the oblique shock wave front to bend as illustrated in Figure 6.23. 
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FIGURE3 6.23 SHOCK FOLLOWED BY EXPANSION (6.5:134) 

The case of expansion followed by compression is very similar to the case just 
discussed. Intersection with a weakening of the shock wave must occur. The details 

of the intersection are different because the intersection occurs on the free stream side 

of the shock instead of in the reduced velocity region behind the shock. Intersection 

cannot be avoided because the shock wave stands at a higher angle with respect to the 
expanded flow lines than do some or all of the local Mach lines at the expansion 

corner. This case is illustrated in Figure 6.24 (6.5.132-136). 

FIGURE 6.24 EXPANSION FOLLOWED BY SHOCK (6.5:135) 
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6.18 TWO-DIMENSIONAL SUPERSONIC AIRFOILS 
In order to appreciate the effect of these various wave forms upon aerodynamic 

characteristics in supersonic flow, refer to Figure 6.25. Parts a and b show the wave 
pattern and resulting pressure distribution for a thin flat plate at a positive angle of 

attack. The airstream moving over the upper surface passes through an expansion 

wave at the leading edge and an oblique shock at the trailing edge. Therefore, a 

uniform suction pressure exists over the upper surface. The airstream moving 

underneath the flat plate passes through an oblique shock wave at the leading edge 
and an expansion wave at the trailing edge. Therefore, a uniform positive pressure 

exists on the underside of the section (shock losses). This pressure distribution 
produces a net lift and also a drag due to lift. The drag is analogous to induced drag 
in subsonic flow but is not a function of downwash as is the case in subsonic flow. 
Remember that pressure disturbances cannot be transmitted ahead of an object in 

supersonic flow, so the fluid is not aware of the approaching object. 

The flat plate, although aerodynamically quite efficient at supersonic speeds, is not 

structurally satisfactory. It is difficult to give it enough strength to withstand the 
loads imposed on the airfoil during high speed flight. 

Parts c and d of Figure 6.25 show the wave pattern and pressure distribution for a 
double wedge airfoil at zero lift. The resulting pressure distribution on the surfaces 
of the double wedge produces no net lift, but the increased pressure on the forward 

half along with the decreased pressure on the rear half of the section produces wave 

drag. This wave drag is a result of the components of the pressure forces which are 
parallel to the free stream direction, and can be a large portion of the total drag at 
high supersonic speeds. 

Parts e and f of Figure 6.25 illustrate the wave pattern and resulting pressure 
distribution for the double wedge airfoil at a small positive angle of attack. The net 
pressure distribution produces drag due to lift in addition to the wave drag at zero lift. 
Similarly, parts g and h show the wave pattern and pressure distribution for a 

circular arc airfoil (also called a bi-convex airfoil) at a small angle of attack. 
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FIGURE 6.25  SUPERSONIC FLOW PATTERN AND DISTRIBUTION 
OF PRESSURE (6.1:163, 165; 6.2:214) 
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6.19 PRESSURE    COEFFICIENT    FOR 
TWO-DIMENSIONAL SUPERSONIC AIRFOILS AND 
INFINITE WINGS 
The preceding paragraphs on the different supersonic waveforms have developed all 
of the mathematical tools required to compute the lift and drag on a simple 
two-dimensional supersonic airfoil. Consider the double wedge or diamond airfoil 

shown in Figure 6.26. 

If the flight Mach, M_, remote ambient pressure, P„, angle of attack, a, and the 

geometry of the wing are known, pressures in areas 2, 3, 5, and 6 can be computed. 

Oblique shock relationships can be used to determine P2 and PB from P.., and 

Prandtl-Meyer relations can be used to determine P3 and P6 from P2 and PB. Once 
these pressures are known, lift and drag can be readily determined from geometric 

relationships. 

This problem can be attacked in a more systematic manner by recalling the definition 

of pressure coefficient 

c = p-p~ 
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FIGURE 6.25 DOUBLE WEDGE AIRFOIL IN SUPERSONIC FLOW 

For an example of the diamond airfoil, the local pressure coefficient can be expressed 

as 

P   - P 
_ X — 

"*•  «. 
(6.61) 

when x = 2, 3, 5, or 6, depending on the area of the airfoil under consideration. 

In terms of remote Mach, M_, Equation 6.61 can be rewritten as 

Cpx    ISy 
(6.62) 

Given a.the geometry of the airfoil, M<*>, and y = 1.4, Cpz and CpB can be determined 

directly from Reference 6.4 and use of Equation 6.62. 

The evaluation of Equation 6.62 for C     and C     can also be easily made.    In 

determining C   , for example, 
P3 
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' 3    _ 

(6.63) 

All of the ratios on the right side of Equation 6.63 are found in Reference 6.4 tables 
after M2 and M3 are determined. After Cp2, Cpa> CpB, and Cpg are determined, the 

forces normal to each surface can be calculated, since 

*"*   =    <CP>X 4.5 

when F, is the force normal to the surface, and again x = 2,3, 5, or 6, depending upon 
the area of the airfoil under consideration. Once all the Fx's are known, they can be 
resolved into components perpendicular to and parallel with the relative wind to 
determine lift and drag on the airfoil at the given angle of attack. 

6.20   THIN WING THEORY 
Although an analytic determination of lift and drag forces acting on even a simple 
two-dimensional supersonic airfoil is a somewhat lengthy problem (as shown in the 
paragraph on two-dimensional wings), an approximate determination is readily 

accomplished. 

Probably the most widely accepted of the approximate (or thin wing) supersonic 
theories is the one due to Ackeret which is either called the linear theory or simply 

the Ackeret theory. For thin airfoils set at relatively small angles of attack, the 

Ackeret theory agrees well with experimental data from Mach of about 1.2 to 5.0, and 

therefore the assumptions made in its development are empirically justified. 

A pressure coefficient is developed (Derivation F.8 Appendix F) such that 

Cr = 
AP =   ±. 28 

V/M
2
-I 

where the minus sign holds for an expansion and the plus sign holds for a 

compression. 

For the double wedge, Ackeret Theory predicts that 
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r   -        4a 

\/M
2
-1 

(6.64) 

r  _     4a2      .        4     /t^2 

VW2-1 VM2-1 
(6.65) 

Where t is the thickness and c is the chord. 

We can write the drag coefficient of the double wedge in the same form we had for 

subsonic flow, 

C„       = C„    + C- Dtot Di Dp 

(6.66) 

Comparing the terms in Equation 6.66 with Ackeret theory gives 

4iir 
C     =        vC 

\/M2-l 

r    -      4a2 

D* "    f—,  VAf2-l 

(6.67) 

(6.68) 

As in subsonic flow, Crv is not a function of a. It is often defined as the wave drag 
p 

coefficient when a = 0.  This term is due to the profile shape and is similar to the 
profile (parasite) drag term of a subsonic wing section, although it does not depend on 

viscosity.   Cm is a function of Mach and the thickness ratio (t/c) defined in Figure 
p 

6.26. 

The second term, CD, can be defined as drag coefficient due to lift and is a direct 

function of a2 

By allowing t to equal zero, Equation 6.65 immediately simplifies to the coefficient of 

drag equation for a flat plate, Equation 6.69. 
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4 a2 

'tot 
\JM2-1 

(6.69) 

From Ackeret theory the equation for lift coefficient for both the flat plate and for the 
double wedge turns out to be 

CL = 
4a 

S/M
2
-I 

(6.70) 

The Ackeret theory presented here may be extended to other airfoil shapes, and in all 

cases, the form of the equations is similar. Figure 6.27 summarizes the lift and drag 

coefficient relationships for the double wedge and circular arc airfoils, the two types 
most commonly used for supersonic flight vehicles. 

DOUBLE WEDGE 

\\\\\\N 

CIRCULAR ARC 

WAVE DRAG COEFFICIENT: 

4|£ 
C„    = 

5.33 

\JM2-1 
s = If 

\IM
2
-I 
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LIFT COEFFICIENT: 
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DRAG DUE TO LIFT: 
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2
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2
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LIFT CURVE SLOPE: 

4 4 
I-a •  L" 

JM2-1 °       v/W2"! 

Where 

(t/c) = AIRFOIL THICKNESS RATIO 

a = ANGLE OF ATTACK (IN RADIANS) 

M = MACH 

FIGURE 6.27 APPROXIMATE EQUATIONS FOR SUPERSONIC SECTION 
CHARACTERISTICS (6.2:225) 

6.21 SUPERSONIC FLOW IN THREE DIMENSIONS 
In supersonic three-dimensional flow we must consider the fact that the stream lines 

do not turn immediately as they do in the two-dimensional case. Therefore, the shock 

wave for a typical three-dimensional shape, i.e., a cone, will be weaker for a given 
velocity. The stream lines approach the object's surface in a rather asymptotic 

fashion. This is seen from the fact that at all points off the apex of the cone, the 

section presented to the flow is a hyperbolic section rather than a sharp point. 

Because of this fact, we have the gradual transition shown in Figure 6.28. 



CHAPTER 6, SUPERSONIC AERODYNAMICS 6.71 

SHOCKWAVE 

HYPERBOLIC SECTION 
PRESENTED TO FLOW 
OFF CENTER LINE 

RAY OF CONSTANT 
PRESSURE 

FIGURE 6.28 STREAM LINES ABOUT A CONE (6.5:123) 

As would be expected, the pressure, density, temperature, velocity, and Mach all vary 
between the shock wave and the surface. After increasing through the shock wave, 
the static pressure and density would continue to increase along a stream line, and 

the velocity and Mach would therefore continue to decrease. However, the pressure 
along any ray from the apex of the cone is constant. Since the surface of the cone is 
essentially the limiting ray from the apex, the surface pressure is constant. Because 
of the nature of the flow, this pressure is considerably lower than that found at the 

surface of an infinite wedge of the same apex angle. For a given vertex angle and free 
stream flow, the pressure change for a cone is about one-third that for a wedge. 

If the cone we have been discussing is suddenly flared out at a new angle, we will 

have a condition in which the surface is formed by the intersection of two coaxial 
cones. This situation is illustrated in Figure 6.29. 
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CURVE OF 
INTERSECTION 

FIGURE 6.29 THE FLARED CONE (6.5:123) 

The curve of intersection of the two surfaces is a circle as shown. If this circle is of 

large radius, we shall have the approximation of two-dimensional flow at the corner 
as the air is forced to turn through the angle 9. The effect of the rounded shape, 
however, acts to relieve the severity of the shock and modify the details of the flow. 

Because of this action, the line of the shock wave will be a curve rattier than a 

straight line. This is illustrated in Figure 6.30. 

SHOCKWAVE 

****** 

SURFACE 1 

FIGURE 6.30 FLOW IN A ROUND CORNER (6.5:124) 

As shown, the stream lines change direction at the shock wave. However, they 

continue to change gradually to approach the condition of parallel flow as we expect 

on the surface of a cone. The bending of the shock line is related to the surface 

curvature (6.5:122-124). 
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Practical application of the three-dimensional effects discussed above could be applied 

to the juncture of canopy and nose on an aircraft or to conical plugs found in engine 
inlets such as those on the SR-71. 

6.22 THREE-DIMENSIONAL SUPERSONIC WINGS 
To this point we have considered only the infinite wing in two-dimensional flow. If 
we have a finite planform such as that given in Figure 6.31, we can expect the apex 

to generate a Mach cone as indicated. This will be true in any practical case of an 

aircraft in flight because of the nose section ahead of the wing. The nose will generate 
a cone of disturbance in which at least a portion of the wing will fly. 

As the velocity of flight, V<» increases, the cone narrows as indicated in Figure 6.31b. 

When the leading edge of the wing is behind the Mach cone angle as shown in Figure 

6.31a, the normal Mach is subsonic, and no shock wave is created at the leading edge. 
The pressure distribution and the forces resulting will be equivalent to those found 
in an airfoil normal to the stream at the corresponding subsonic Mach. In this case, 
it is advantageous to use a subsonic airfoil section rather than a supersonic section 
if the wing will always be below the effective Mach of unity. 
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LEADING EDGE 
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FIGURE 6.31 MACH CONE LIMITS 

If the Mach cone falls behind the leading edge as shown in Figure 6.31b, the effective 

flow on the wing is supersonic at the leading edge. However, it is quite possible that 

the effective flow may be supersonic at the leading edge but subsonic at the trailing 
edge. This would certainly happen behind a shock cone. The pressure distribution 
is modified by the transition from supersonic to .subsonic flow. These effects are also 

involved in the analysis of tip losses. Each point on the leading edge generates a 

pressure differential inside its own Mach cone.    This pressure distribution is 
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essentially conical. These are essentially additive until reaching the tip. The area in 

a cone behind the tip has a reduced pressure gradient; therefore, less lift. Let us 

consider a flat plate wing of finite aspect ratio as shown in Figure 6.32. 

Since the tip losses are confined to the region within the tip cones, the tips could be 

cut off at an angle slightly greater than the Mach angle so that none of the wing is 

contained within the Mach cone. Then there are no induced effects, and the wing acts 

as in two-dimensional flow, and Equations 6.65 and 6.70 apply. 

*f/T>-^    *   /f»   <t>   /f»/f 

Cross-section of the airfoil 
at the 50% chord to show 
reduced pressure distribution 
at tips 

■ THREE-DIMENSIONAL ' 
FLOW 

FIGURE 6.32 SUPERSONIC TIP EFFECTS (6.1:166) 

6.23   TRANSONIC FLOW REGIME 
In the previous paragraphs, the subject of transonic aerodynamics has been judiciously 
avoided. It can be seen from Ackeret thin wing theory (Equations 6.67 - 6.70) that lift 

and drag tend to become infinite in the vicinity of Mach 1. A similar result is also 

found from subsonic theory proposed by Prandtl and Glauert, shown in Figure 6.33. 
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FIGURE 6.33 TRANSONIC LIFT COEFFICIENT CHARACTERISTICS 

From this figure comes the concept of the mythical sonic barrier. In the actual case, 
the lift coefficient follows a trend more like that indicated by the dotted line. 

Transonic flow over a body is complicated by the fact that both subsonic and 
supersonic flows exist simultaneously on the surface of the aircraft. The interaction 
between these two types of flow plus the viscous effects in the boundary layer create 

a condition that defies direct mathematical analysis. 

Even experimental results in the wind tunnel are difficult to obtain because of the 

tunnel choking effects caused when a model is placed in the nearly sonic throat of the 
tunnel. The approach in this chapter will be to extrapolate the concepts of viscous, 

subsonic flow and nonviscous supersonic flow into this region of mixed flow conditions 

resulting in a qualitative look at the transonic speed range. 

The transonic speed range begins when sonic flow first occurs over the surface of the 

vehicle and ends when the flow is supersonic over the entire surface (with the possible 

exception of a small insignificant subsonic region at the leading edge). 

From Bernoulli's theorem, it has been shown that the velocity increases and the 
pressure decreases as air flows subsonically over the surface of an airfoil. As the 

Mach of the vehicle is increased, the flow near the thickest portion of the airfoil 
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approaches Mach 1 as in Figure 6.34a. 

This is the critical Mach of the airfoil and is always less than 1. When the vehicle 
velocity exceeds the critical Mach, regions of subsonic and supersonic flow are created 

on the airfoil as shown in Figure 6.34, parts b and c. 

A shock always exists at the trailing edge of the supersonic region, and as the vehicle 

velocity is increased above the critical Mach, the supersonic region grows fore and aft 

of the point of maximum thickness until it reaches the trailing edge and is very nearly 

attached to the leading edge as in Figure 6.34e. 

When the bow shock attaches to the leading edge, the airfoil has left the transonic 

speed regime and has entered the supersonic regime. 

6.23.1 THICKNESS 
As speed increases from subsonic to transonic, thick, unswept, straight-tapered wings 

show increases in lift-curve slope up to Mach slightly beyond the critical. The slope 

then drops to a lower value followed by a rise starting near Mach 1 to a value almost 
as high as the value at the critical Mach. This type of behavior is illustrated in 

Figure 6.33. 

Reducing either the aspect ratio, the wing thickness ratio, or both reduces the 
magnitude of these effects. For very thin wings and for wings of very low aspect ratio, 
these transonic nonlinearities do not exist, and the CL-M curve resembles Figure 6.35. 
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FIGURE 6.34 TRANSONIC FLOW PATTERS (6.2:216) 
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FIGURE 6.35 THIN WING TRANSONIC LIFT COEFFICIENT 

Further evidence of the benefits of reducing airfoil thickness for the transonic flight 

regime is shown in Figure 6.36, where pressure coefficient as a function of critical 

Mach is shown for various thicknesses of airfoils. 
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FIGURE 6.36 CRITICAL PRESSURE COEFFICIENT AND CRITICAL 
MACH FOR AIRFOILS OF DIFFERENT THICKNESS (6.6:167) 

6.23.2 SUPERCRITICAL AHtFODLS 
Another method which can be utilized to increase critical Mach and delay the 

transonic drag rise is to use a supercritical airfoil. Such an airfoil is depicted in 
Figure 6.37. The supercritical airfoil is thicker than the conventional airfoil; this 

results in greater rigidity and internal volume. At the same time, the recovery shock 

wave on top of the wing is weaker and is moved much further aft than on 

conventional airfoils. The supercritical airfoil causes less boundary layer separation, 

resulting in a delay in the drag rise which occurs on a conventional airfoil section at 

the critical Mach. The result is that the drag rise associated with passage through 

critical Mach is delayed. 
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FIGURE 6.37 COMPARISON OF DRAG RISE PHENOMENA AT 
CRITICAL MACH 

6.23.3 WING SWEEP 
The final method to be discussed for delaying critical Mach to higher values is wing 
sweep. To the airstream, the velocity (or Mach) that is important is the component 
that is perpendicular to the leading edge of the wing. By referring to Figure 6.38a, 
it is seen that the component of velocity perpendicular to the leading edge of the wing 
is less than the free stream value by the cosine of the sweep angle A. Therefore, the 
critical Mach is increased, and the transonic drag rise is delayed. Reduction in drag 

coefficient as a function of Mach for several values of wing sweep is illustrated in 

Figure 6.38b. 
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FIGURE 6.38 GENERAL EFFECTS OF SWEEPBACK (6.2:227) 

Spanwise flow tends to develop from the root toward the tip as depicted in Figure 

6.39. This spanwise flow contributes to the strength of wing tip vortices, thereby 

increasing induced drag at high angles of attack. The swept back wing also tends to 
separate and stall first at the wing tip. This is, of course, undesirable from a control 

point of view as ailerons are normally located toward the wing tip. These stall 

characteristics are also depicted in Figure 6.39. The tendency can be decreased by 
twisting and/or tapering the wing, but again a" penalty arises due to the structural 
complications caused by bending toward the wing tips; this twists the wing and 

imposes torsional loading. 
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FIGURE 6.39  STALL CHARACTERISTICS OF TAPERED SWEPT 
WING (6.2:232) 

A further disadvantage of wing sweep is illustrated in Figure 6.40. Note that for the 
same angle of attack, a straight wing is capable of producing a much higher lift 

coefficient than a swept wing. 
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FIGURE 6.40 EFFECT OF SWEEPBACK ON LOW SPEED LIFT 
CURVE (6.2:228) 

Aerodynamically, the effect of wing sweep with regard to delaying critical Mach 

applies to forward sweep as well as sweep back. The spanwise flow on a forward 
swept wing, however, is from the tip toward the root and tends to be beneficial. The 

major reason forward swept wings have not been widely used in the past is because 

of aeroelastic divergence problems. The present day improvement in composite 
materials has provided us with a material that has the stiffness needed to combat 

such problems. 

Despite many disadvantages, rearward wing sweep has been for many years the 
primary method used to delay transonic drag rise. Reference to Figure 6.38b, 
however, shows that at higher supersonic Mach, a straight wing becomes superior 

from a drag standpoint. 

6.23.4 FUSELAGE SHAPE AND AREA RULE 
The onset of shock formation is also accompanied by a very severe drag rise. For an 

aircraft the best fuselage shape and the best wing fuselage combination that will delay 

the drag rise and/or tend to limit the severity of its effect is of major interest. 

As a matter of both calculation and testing, it is found that a body of revolution with 

high fineness ratio (ratio of length to diameter) gives the least drag. The nose section 

should not be a cone. The best shape for the nose resembles that shown in Figure 

6.41. 
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FIGURE 6.41  OPTIMUM NOSE SHAPE 

Unfortunately, a true body of revolution is not found in actual vehicles. As an 

example, the canopy will form a bulge in the fuselage. The wings, when attached, will 

further modify the shape. However, without the necessity of preserving the exact 

form of the aircraft, the equivalent effect of wings and canopy can be preserved by 
making an equivalent body of revolution with the proper bulges located in the 

appropriate regions. This is shown in Figure 6.42. 

FIGURE 6.42 EQUIVALENT BODY OF REVOLUTION 

The abrupt offsets in the surface will cause an increase in drag above that for the 

ideal body of revolution. To minimize drag it will be necessary to remove material 

from the region of the bulges. Because the wings must be present, the contour of the 

fuselage is changed in this region to compensate for them. The same thing can be 
done in the region of the canopy. In some instances, it may be necessary to introduce 
bulges in the fuselage behind or ahead of the wing to introduce the equivalent effect 

of the smooth aerodynamic contour. A striking example of this effect is the extending 

of the "cab" of the Boeing 747. Wind tunnel data show that the Mach at which drag 
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rise shows a significant increase is delayed by smoothing the area distribution by 

fairing the fuselage-cab juncture. The drag effect of the fairing is insignificant until 
MCT is reached for the unfaired juncture; then the fairing delays the Mach at which 
waves are generated. As shown in Figure 6.43, the fairing causes an increase in Mcr 

for MCT for .3 < CL < .5. 

The application of the transonic area rule will delay the drag rise, but in any event 

shock formation cannot be avoided if the flight Mach is sufficiently increased. The 

contour of the fuselage that will be effective at Mach 1 is not as effective at Mach 1.2. 

In fact, the conditions which provided an advantage in the transonic region may 

become a disadvantage at higher Mach. It is generally considered that area rule 

application is pointless above Mach 1.5. Further illustrations of the effects of area 

ruling are shown in Figure 6.44. 

Transonic flow also produces important changes in the aerodynamic pitching moment 

characteristics of wing sections. The aerodynamic center of airfoils in subsonic flow 
is located at about the 25% chord point. As the airfoil is subjected to supersonic flow, 
the aerodynamic center changes to about the 50% chord point. Thus, the aircraft in 

transonic flight can experience large changes in longitudinal stability because of the 

large changes in the position of the aerodynamic center. If an aircraft stabilizes in the 

transonic region, the aerodynamic center may oscillate between the 25% chord point 

and the 50% chord point, often at very high frequency; this further aggravates 

longitudinal stability problems. 
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FIGURE 6.43 BENEFITS OF AREA RULE APPLICATION 
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FIGURE 6.44 "COKE BOTTLE" FUSELAGE (6.1:166) 

6.23.5 TRANSONIC AND SUPERSONIC CONTROL SURFACES 
The design of control surfaces for transonic and supersonic flight involves many 

important considerations. This fact is illustrated by the typical transonic and 

supersonic flow patterns of Figure 6.45. Trailing edge control surfaces can be affected 

adversely by the shock waves formed in flight above the critical Mach. If the airflow 

is separated by the shock wave, the resulting buffet of the control surface can be very 

objectionable. In addition to the buffet of the surface, the change in the pressure 

distribution due to separation and the shock wave location can create very large 

changes in control surface hinge moments. Such large changes in hinge moments 
create very undesirable control forces and present the need for an "irreversible" 

control system.  An irreversible control system would employ powerful hydraulic or 
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electric actuators to move the surfaces upon control by the pilot, and the airloads 
developed on the surface could not feed back to the pilot. Of course, suitable control 

forces would be synthesized by bungees, "q" springs, bob-weights, etc. 

Transonic and supersonic flight can cause a noticeable reduction in the effectiveness 

of trailing edge control surfaces. The deflection of a trailing edge control surface at 

low subsonic speeds alters the pressure distribution on the fixed portion as well as the 

movable portion of the surface. This is true to the extent that a 1° deflection of a 40% 

chord elevator produces a lift change very nearly the equivalent of a 1-degree change 
in stabilizer setting. However, if supersonic flow exists on the surface, a deflection of 

the trailing edge control surface cannot influence the pressure distribution in the 

supersonic area ahead of the movable control surface. This is especially true in high 

supersonic flight where supersonic flow exists over the entire chord and the change 
in pressure distribution is limited to the area of the control surface. The reduction in 

effectiveness of the trailing edge control surface at transonic and supersonic speeds 

necessitates the use of an all movable surface. Application of the all movable control 

surface to the horizontal tail is most usual since the increase in longitudinal stability 
in supersonic flight requires a high degree of control effectiveness to achieve required 

controllability for supersonic maneuvering (6.2:236, 238). 
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FIGURE 6.45 PLANFORM EFFECTS AND CONTROL SURFACES 
(6.2:237) 

6.24    SUMMARY 
In this chapter we have studied the theory of supersonic and transonic flow. 
Emphasis was placed on the practical application of the theory to realistic two and 

three dimensional flow problems about aerodynamic shapes. Understanding and 

application of supersonic theory will be necessary in Chapter 7 on Propulsion. 

Present day supersonic aircraft and space shuttle operations necessitate a thorough 
understanding of this material by the flight test pilot and flight test engineer. 



CHAPTER 6, SUPERSONIC AERODYNAMICS Ml 

6.1 Aerodynamics for Pilots. ATC Pamphlet 51-3, July 1979. 

6.2 Hurt, H.H., Jr., Aerodynamics for Naval Aviators. NAVWEPS 00-80T-80, Office 
of the Chief of Naval Operations Aviation Training Division, U.S. Navy, 1960. 

6.3 Zucker, R.D., Fundamentals of Gas Dynamics.    Champaign, IL:    Matrix 

Publishers, Inc., 1977. 

6.4 NACA Report 1135, Equations. Tables and Charts for Compressible Flow. Ames 

Research Staff, Ames Aeronautical Laboratory, Moffett Field, CA. 

6.5 Carroll, R.L. The Aerodynamics of Powered Flight.  New York:  John Wiley & 

Sons, 1960. 

6.6 Anderson, J.D., Jr., Introduction to Flight. New York: McGraw-Hill Inc., 1978. 

6.7 John, J.E.A., Gas Dynamics. Boston, Mass: Allyn and Bacon, 1969. 


